
I.t. J. SoIUh SIr.ct.,., Vol. 18, No. 12, pp. 1075-1082, 1982
Printed in Great Britain.

0026-7683/121121075-01$03.00/0
© 19112 Perpmon Pre" Ud.

A THREE-DIMENSIONAL RECTANGULAR
CRACK SUBJECTED TO SHEAR LOADING

M. K. KASSIR

Department of Civil Engineering, City College of City University of New York, New York, NY IOIl3!,
U.S.A.

(Received 5 March 1982)

AbItrac:t-In this paper a solution is derived to treat the three-dimensional elastostatic problem of a narrow
rectangular crack embedded in an infinite elastic medium and subjected to equal and opposite shear stress
distribution across its faces. Employing two-dimensional integral transforms and assuming a plane-strain
solution across the width of the crack, the stress field ahead of the crack length is reduced to the solution of
an integral equation of Fredholm type. A numerical solution of the integral equation and the corresponding
mode II stress-intensity factor is obtained for several crack dimensions and Poisson's ratios of the material.

INTRODUCTION
Reference [1] contains an integral transform solution which reduce the problem of determining
the mode I stress-intensity factor of a narrow rectangular crack embedded in an infinite solid to
the solution of a standard integral equation. The solution consists of representing the com­
ponents of stress and displacement in terms of double integrals containing an auxiliary function.
By assuming a plane-strain stress field across the width of the crack, the auxiliary function,
which determine the stress field ahead of the crack length, is shown to be governed by a
Fredholm integral equation of the second kind.

This paper treats the accompanying problem of finding the mode II stress-intensity factor for
the same three-dimensional crack profile. It is assumed that the crack surfaces are deformed by
the application of equal and opposite shear stresses parallel to one side of the crack. The
solution employed leads to an integral equation of Fredholm type which is solved numerically
to determine the dependence of the krfactor on Poisson's ratio of the material and on crack
aspect ratios. In all cases examined the maximum value of k2 is less than that of the
corresponding plane-strain problem.

BASIC EQUATIONS AND FORMULATION

A crack of rectangular planform (sides 2a x 2b) is embedded in the mid-plane of a three­
dimensional, homogeneous, elastic and isotropic solid. In terms of cartesian coordinates (x, y, z)
centered at the mid-point of the crack, the surfaces of the crack are described by the relations
Ixl E; a, Iyl E; b in the z =+: 0 planes. When the crack surfaces are deformed by the application
of equal and opposite shears Txzo the stress-field can be found by considering the half-space
z ~ 0 subject to the following boundary conditions on z = 0

U z = 0, all x and y,

Txt = TO<X, y), Ixl E; a, Iyl E; b

Tyz = 0, Ixl:so; a, Iyl:so; b

Ux = 0, Ixl> a, Iyl> b

(I)

(2a)

(2b)

(2c)

and the usual regularity requirements at locations away from the crack region. In eqns (I) and
(2), (ux, Uyo uz) designate the components of the displacement vector, u .. Txz and Tyz denote the
components of the traction on the z = 0 plane and TO<X, y) stands for the prescribed shear stress
inside the crack region.

A suitable potential function representation of the displacement components which satisfy
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the field equations of equilibrium and automatically confirm the condition in equation (I) can be
expressed as[2,3]

a a2
211u = - 2(1- v) --.£+ z-!

... x az ax" (3a)

(3b)

(3c)

where,." and II designate the shearing modulus and Poisson's ratio of the material, respectively,
and g(x, Y, z) is a harmonic function satisfying Laplace's equation in three dimensions

(4)

Some of the associated stresses are

(5a)

(5b)

(5c)

For the class of problems under discussion, the substitution g = XYZ leads to the variable
separable solution

(6)

in which B(g, 1J) is an unknown function and the factor l/(e + 1J2)1I2 has been introduced for
convenience. Inserting eqn (6) into eqns (3H5), the following expressions are reached:

2,."ux(x, Y, 0) = 2(1- II) Joa Joa:~cos(x~) cos(Y1J) d~ d7l,
00 g+1J

'TZy(x, Y,O) = II Loa L"" e€;1J2 B(g, TJ) sin(x~) sin(YTJ) d~ dTJ·

(7a)

(7b)

(7c)

Making use of these expressions in conjunction with boundary conditions (2) yield the
necessary relations to determine the unknown function B(g, 1J). Inside the crack region (Ixl 0;;; a,
Iylo;;; b)

L<>C L<>C (1- e7~2)B(g, 1J) cos(x~) cos(Y1J) dg d1J = - 'To(x, y), (8a)

(8b)
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while outside the crack the following relation holds

foe f" B({, !J) cos(x{) cOS(Y!J) d{ d1} =0, Ixl> a, lyl> b.
o o~
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(8c)

REDUCTION TO AN INTEGRAL EQUATION

In order to derive the integral equation governing the unknown function B({, !J), it is
expedient to express the shear stress Txz(X, y,O) in the form

Txz(X, y,O)= T(X)S(y), (9)

in which T(X) and s(y) are arbitrary functions yet to be determined. Inside the crack these
function are specified while in the outside region they yield the mode II stress-intensity factor.
Applying relation (9) to the expression in eqn (7b) and assuming the inversion of the
two-dimensional Fourier cosine transform, it is found that

(10)

where TcU) and sc(1}) designate the one-dimensional cosine transforms of the functions T(X)
and s(y) respectively, i.e.

TcW = 10" T(X) cos(x{) dx,

Since the functions T(X) and $(Y) are specified inside the crack

T(X) =To(X) O:E;;X:E;;a,

it immediately follows that

10" sc(!J) cos(y!J) d!J = I so(y), O:E;; y :E;; b.

(Ha)

(1lb)

(l2a)

(12b)

(13a)

(13b)

For the purpose of determining the corresponding relations governing TcW and sc(!J) in the
region of the z =0 plane outside the crack, relation (10) is inserted into equation (7a) and upon
setting y =0 (in order to compute the maximum stress-intensity factor along the side of the
crack) it is found that

2(1- If)1"Ux =--- Tc({)S.W cos(x{) d{,
7TJ.' 0

In eqn (14), the following abbreviation has been introduced

x>a. (14)

(15)
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which may be simplified by substituting eqn (lIb) and making a permissible interchange in the
order of integration to read

21'"SkW == - s(8)I(~, 8) d8,
7T 0

with

Utilizing the identity [4]

The integral in eqn (l7) may now be written in the form

(l6)

(17)

(18)

(19)

where K" is the modified Bessel function of the second kind of order n. In this manner,
condition (2c) when used in the relation (14) yields

(20)

which is the required equation satisfied by Tc(~) in the region outside the crack. In a similar
manner the equation governing the function sA'I'/) along the y-axis is

(21)

Here, the function Tk('I'/) stands for

and

* _ '1/; ~ [--!!!!!L]" K,,(8"1?
I (6,'I'/)-I-v:20 2(v-l) f(n+v'

(22)

(23)

Equations (13a) and (20) form a standard set of dual integral equations with an arbitrary
weight function, It is readily solved by writing

(24)

where 10 is the Bessel function of the first kind of order zero, The auxiliary function, q,(t), is
determined by way of the Fredholm equation

(a _ It 'To(x) dx
q,(t)+ Jo q,(8)K(8,t)d8--t 0 (t2_X~\I2' (25)
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and the kernel, K(8, t), is given by
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(26)

With view toward numerical treatment, it is found convenient to rewrite eqns (25) and (26)
by introducing the non-dimensional parameters

t = ar, 8 = ap, Z = ay, (27)

and, furthermore, when the crack is deformed by means of the application of a constant
shearing stress, TO<X) = To, the following contraction is introduced

• ,- 71'
cP(t) =cP(ar) =- Toa v ,~(r)·2'

so as to enable one to write the integral equation in the standard form

~(r)+ f ~(p)L(a" ap)dp = ,1/2

in which the symmetrical kernel is given by

(28)

(29)

(30)

and sk(zla) is given in eqns (16HI9). The next step in the analysis is to determine the function
s(8) in eqn (16). This will be done next by assuming a plane-strain solution across the width of
the crack.

PLANE STRAIN SOLUTION

For a narrow rectangular crack a plane strain solution can be assumed across the width of
the crack to furnish the stress field ahead of the crack length. Utilizing this assumption the
function s(y) is computed by evaluating Tzy(Y, z) at z = O. In the yz-plane the appropriate crack
conditions are

O'z(y,O) = 0, all values of y,

Tz,(y,O) = sO<Y), 0 =E; Y=E; b,

u,(y,O) = 0, y> b

(31a)

(31b)

(31c)

and the solution of this class of problems can be achieved by expressing the displacements u,
and Uz in terms of a potential function h(y, z) as

ah a2h
2p.u = -(l-2v)-+z-.

z ay ayaz

Some of the associated stresses are readily computed as

(32a)

(32b)

(33a)
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a2h a3h
Tzy(Y,Z)=-azr+ Z ay2az' (33b)

If the function h(y, z) is assumed to be given by the expression

h = - 10'" C'l/J(t) cos(ty) e-1z dt, (34)

then it is readily shown that boundary conditions (3tb) and (3tc) lead to the dual integral
equations

10'" "'(t) cos(ty) dt = 0, y> b,

where

",(t) = 1 I b

B1 'Bt) dB18

So(y) dy
'I' 7T 0 0\ 0 (BZ-ljIlZ.

In order to evaluate SkW it immediately follows from eqns (16) and (19) that

Since

S(y) = 10'" t",(t) cos(ty) dt,

(35a)

(35b)

(36)

(37)

(38)

and by inserting eqn (38) into (37), making a permissible change in the order of integration and
in view of the result[4]

(39)

it can be shown that

(40)

Substituting the relation (36) into (40) and evaluating the inner integral with the help of the
identity

it is readily shown that

1 '" 2(3/2)-n ( )n i b
_ v n+1/2 1/2-n

SkW - 7T(l- v) ~o f(n +h v-I ~ 0 t K'/2-n(t~) dt,

I t so(y)dy
x 0 (tZ_ y2jIl2'

(41)

(42)
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which determines the function Sk. For constant shear stress, so<y) = 1, and eqn (42) reduces to

(43)

Inserting eqn (43) into (30) and after some simplification the kernel of the integral equation can
be written as

(44)

in which the following contraction has been made

(45)

It is not difficult to confirm that the integral (44) is rapidly convergent throughout its range and
eqn (29) can be solved numerically in a routine mannar[5]. In contrast to the opening mode
loading[l], the kernel (and consequently the stress-intensity factor) in the present case is
dependent on the material of the solid.

STRESS-INTENSITY FACTOR

In order to compute the stress-intensity factor, the relations (27) and (28) are inserted into
(24) and the result may be expressed as

TeWSkW = - a;;o {~(1)]I(a~)+f S]I(S~)'

X d~ [S-1/2~(S)] ds },

Since from eqn (11a)

21'"T(X) = - TeW cos(x~) d~,
11' 0

it immediately follows that

(46)

(47)

(48)

where terms which are finite as x -+ a have been neglected. In order to extract the singularities
of the integral (48), the function SkW is expanded for small and large arguments. For small
values of the argument

(49)

and it follows that the integral (48) is finite at the lower limit. For large values of ~

(50)

and eqn (43) implies

(51)
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Accordingly, the dominant part of the integral in equation (48) yields

(52)

The expression for the shearing stress Txz(X, 0, 0) outside the crack can be obtained from eqns
(9), (36), (38) and (52). Near the crack side the maximum shear stress may be expressed in the
standard form

(53)

where r is a small distance measured from the side of the crack and the mode II stress-intensity
factor is

(53)

The numerical values of k2/To(7I'a)1/2 are shown in Table 1 for various aspect ratios of the crack
sides and Poisson's ratios of the material of the solid. It is evident that there is a reduction in
the value of k2 for the narrow three-dimensional crack. For an infinite strip crack, b ..... 00,

eStW ..... l, the kernel in eqn (30) becomes zero and the plane-strain solution is recovered.

Table I. Values of k2/TO<1Ta)112

b II

a 0.1 0.2 0.3 0.4

I 0.759 0.796 0.831 0.866
2 0.908 0.926 0.940 0.966
4 0.973 0.984 0.987 0.996

10 0.997 0.998 0.999 0.999
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